SPI NiOXTM Test Specimen

Use Instructions

The SPI Supplies NiOX[™] Test Specimen consists of a uniform thin film of nickel oxide on a molybdenum support grid. It can be used for the following six test protocols. <u>Please let us know if you think of more!</u>

1. To test for stray electrons and x-rays in a TEM column, measure the Ni $_{\kappa}\alpha$ /Mo $_{\kappa}$ α count ratio with the electron beam near the center of the test specimen and in the center of a grid square. Typical values for this ratio are in the range of 3 to 7 for modern TEMs. *This test should not be performed if you use a molybdenum condenser aperture*.

2. To test for the total contribution of the instrument to the EDS spectrum background, measure the total integrated counts, P (above background), in the Ni_k α peak and the flat background B₅₀₀ integrated over 500 eV (the average of the two regions on either side of the peak). The peak/background ratio is P/B = 50 x P/B₅₀₀. For 100 to 200 kV accelerating voltage and probe diameters in the range 20 to 200 nm, P/B should be at least 1000, and more modern instruments may give a value closer to 3000.

3. Measurement of the full width at half maximum of the Ni_k α peak {FWHM (Ni)} allows the energy resolution of the EDS detector using Mn_k α radiation to be estimated as FWHM(Mn) $\approx 0.926 \text{ x FWHM}(\text{Ni})$. For a light-element detector, FWHM(O) should be lower by a factor of 1.6. Thereference for the assumption of the 0.926 factor is Bennett and Egerton, J. Microsc. Soc. Amer. 1 (1995) 143-150. It is based on O_k and Ni_kFWHM's measured on both Si(Li) and Ge detectors.

4. The collection solid angle of the EDS detector (in sterad) is given by $\text{omega} = 4.05 \times P/(t \times \tau \times I)$, where P is the characteristic Ni_k α counts recorded in a live time of τ seconds with a probe current of I picoamperes, measured using a picoammeter connected to the TEM screen, to a Faraday cup or if to a spectrometer made by Gatan, Inc., to the flight tube and t (≈ 50) is the thickness in nm of the NiO film.

5. For windowless and thin-window EDS detectors, the $O_{\kappa}\alpha$ /Ni_k α count ratio is typically 0.2. The theoretical value is 0.73. If the measured ratio decreases with time, check for a buildup of ice or hydrocarbon on the detector or on the window.

6. For E-axis calibration in electron energy loss spectroscopy, the $O_{K edge}$ should appear at 533 eV and the Ni_{Ledge} at 854 eV if they are measured at the point of maximum slope. A measurement of the areas under these two edges provides a test of the EELS quantification procedure.